Reconfigurable Liquid Crystal Elastomer Director Patterns for Multi-Mode Shape Morphing

Author:

Zeng Xianbing1,Zhou Tianfeng12,Li Lei1,Song Juncai1,Duan Ruijue1,Xiao Xiang1,Xu Baiqian1,Wu Guanghao1,Guo Yubing1ORCID

Affiliation:

1. School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China

2. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China

Abstract

Liquid crystal elastomers (LCEs) are a monolithic material with programmable three-dimensional (3D) morphing modes stemming from their designable non-uniform molecular orientations (or director). However, the shape morphing mode is generally fixed when director patterns of LCEs are determined. Multi-mode shape morphing is difficult to achieve since director patterns cannot be reconfigured. Herein, we demonstrate the ability to reconfigure LCE director patterns and initial shapes—and thus shape morphing modes—by the manual assembly and de-assembly of LCE pixels. We measured the mechanical properties of LCEs with and without UV glue and found their Young’s moduli were 9.6 MPa and 11.6 MPa. We firstly fabricate LCE pixels with designed director fields and then assemble 24 pixels with required director fields into an LCE film with a designed director pattern, which corresponds to a programmed shape morphing mode. We further exhibit that we can de-assemble the LCE film back into original pixels or new pixels with different shapes and then re-assemble them into a new film with a different initial shape and director pattern, which corresponds to a second programmed shape morphing mode. Principally, we can have a large amount of shape morphing modes if we have enough pixels. The demonstrated capability of multi-mode shape morphing enhances functions of LCEs, which broadens their applications in soft robotics, programmable origami/kirigami, responsive surfaces, and so on.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3