Leaping liquid crystal elastomers

Author:

Hebner Tayler S.1ORCID,Korner Kevin2ORCID,Bowman Christopher N.13ORCID,Bhattacharya Kaushik2ORCID,White Timothy J.13ORCID

Affiliation:

1. Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, USA.

2. Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA.

3. Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO 80309, USA.

Abstract

Snap-through mechanisms are pervasive in everyday life in biological systems, engineered devices, and consumer products. Snap-through transitions can be realized in responsive materials via stimuli-induced mechanical instability. Here, we demonstrate a rapid and powerful snap-through response in liquid crystalline elastomers (LCEs). While LCEs have been extensively examined as material actuators, their deformation rate is limited by the second-order character of their phase transition. In this work, we locally pattern the director orientation of LCEs and fabricate mechanical elements with through-thickness (functionally graded) modulus gradients to realize stimuli-induced responses as fast as 6 ms. The rapid acceleration and associated force output of the LCE elements cause the elements to leap to heights over 200 times the material thickness. The experimental examination in functionally graded LCE elements is complemented with computational evaluation of the underlying mechanics. The experimentally validated model is then exercised as a design tool to guide functional implementation, visualized as directional leaping.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3