Mathematical Modeling of Transient Processes in Magnetic Suspension of Maglev Trains

Author:

Chaban Andriy,Lukasik Zbigniew,Lis Marek,Szafraniec AndrzejORCID

Abstract

On the basis of a generalized interdisciplinary method that consists of a modification of Hamilton–Ostrogradski principle by expanding the Lagrange function with two components that address the functions of dissipation energy and the energy of external conservative forces, a mathematical model is presented of an electromechanical system that consists of the force section of a magneto-levitation non-contact maglev suspension in a prototype traction vehicle. The assumption that magnetic potential hole, generated naturally by means of cryogenic equipment, is present in the levitation suspension, serving to develop the model system. Contrary to other types of magnetic cushion train suspensions, for instance, maglev–Shanghai or Japan–maglev, this suspension does not need a complicated control system, and levitation is possible starting from zero train velocity. As high-temperature superconductivity can be generated, the analysis of levitation systems, including the effect of magnetic potential holes, has become topical. On the basis of the model of a prototype maglev train, dynamic processes are analyzed in the levitation system, including the effect of the magnetic potential hole. A system of ordinary differential equations of the dynamic state is presented in the normal Cauchy form, which allows for their direct integration by both explicit and implicit numerical methods. Here, the results of the computer simulations are shown as figures, which are analyzed.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference29 articles.

1. Magnetic Potential Hole—Stabilization Effect of Superconducting Dynamical Systems;Michalewicz,1991

2. The Feynman Lectures on Physics;Feynman,1964

3. Modelling and Designing Cryogenic Hydrogen Tanks for Future Aircraft Applications

4. Possible highT c superconductivity in the Ba?La?Cu?O system

5. Applications of High Temperature Superconductors to Electric Power Equipment;Kalsi,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3