Modeling and Analysis of a Novel Levitation Magnet with Damping Coils for High-Speed Maglev Train

Author:

Fu Shanqiang123,Deng Zigang1ORCID,Han Weitao23,Gao Xinmai23,Zhou Ying23

Affiliation:

1. State Key Laboratory of Rail Transit Vehicle System, Southwest Jiaotong University, Chengdu 610031, China

2. CRRC Qingdao Sifang Company Ltd., Qingdao 266111, China

3. State Key Laboratory of High-Speed Maglev Transportation Technology, Qingdao 266111, China

Abstract

In this work, a novel levitation magnet with damping coil is proposed to address the existing issues and improve reliability. The fault mechanism of the existing magnet is analyzed and validated using a coupling model combined with inductive voltage experiments. The magnetic yoke with damping coils is designed and the equivalent magnetic circuit (EMC) model of the magnet is established. The nonlinearity of magnetic materials and the magnetic flux fluctuation due to the tooth-slot effect are considered in the EMC model. Simultaneously, the transient finite element (FEM) model is built. The magnetic flux of yoke, the inductive current of the damping coil, and the magnetic force are analyzed. A good agreement is found between EMC and FEM. Additionally, the static magnetic force is tested on the magnet test platform to validate EMC and FEM models. Results reveal that compared with the existing magnet, the magnetic flux fluctuation with damping coils is significantly reduced, and the inductive voltages with the damping coil are significantly decreased. The novel magnet with damping coils featuring excellent magnetic characteristics is more advantageous for the system’s security and durability.

Funder

National Key R&D Program of China under Grant

Sichuan Science and Technology Program

Fundamental Research Funds for the Central Universities of China

State Key Laboratory of High-Speed Maglev Transportation Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3