Abstract
In this study, dynamic simulations of a wind turbine were performed to predict its dynamic performance, and the results were experimentally validated. The dynamic simulation received time-domain wind speed and direction data and predicted the power output by applying control algorithms. The target wind turbine for the simulation was a 2 MW wind turbine installed in an onshore wind farm. The wind speed and direction data for the simulation were obtained from WindSim, which is a commercial computational fluid dynamics (CFD) code for wind farm design, and measured wind speed and direction data with a mast were used for WindSim. For the simulation, the wind turbine controller was tuned to match the power curve of the target wind turbine. The dynamic simulation was performed for a period of one year, and the results were compared with the results from WindSim and the measurement. It was found from the comparison that the annual energy production (AEP) of a wind turbine can be accurately predicted using a dynamic wind turbine model with a controller that takes into account both power regulations and yaw actions with wind speed and direction data obtained from WindSim.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献