Advanced Methods for Wind Turbine Performance Analysis Based on SCADA Data and CFD Simulations

Author:

Castellani Francesco1ORCID,Pandit Ravi2ORCID,Natili Francesco1ORCID,Belcastro Francesca3,Astolfi Davide1

Affiliation:

1. Department of Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy

2. Centre for Life-Cycle Engineering and Management (CLEM), School of Aerospace Transport and Manufacturing, Cranfield University, Bedford MK43 0AL, UK

3. FERA Srl, Piazza Cavour 7, 20121 Milan, Italy

Abstract

Deep comprehension of wind farm performance is a complicated task due to the multivariate dependence of wind turbine power on environmental variables and working parameters and to the intrinsic limitations in the quality of SCADA-collected measurements. Given this, the objective of this study is to propose an integrated approach based on SCADA data and Computational Fluid Dynamics simulations, which is aimed at wind farm performance analysis. The selected test case is a wind farm situated in southern Italy, where two wind turbines had an apparent underperformance. The concept of a space–time comparison at the wind farm level is leveraged by analyzing the operation curves of the wind turbines and by comparing the simulated average wind field against the measured one, where each wind turbine is treated like a virtual meteorological mast. The employed formulation for the CFD simulations is Reynolds-Average Navier–Stokes (RANS). In this work, it is shown that, based on the above approach, it has been possible to identify an anemometer bias at a wind turbine, which has subsequently been fixed. The results of this work affirm that a deep comprehension of wind farm performance requires a non-trivial space–time comparison, of which CFD simulations can be a fundamental part.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3