Abstract
This paper presents the experimental characterization of the vibroacoustic fields and the evaluation of noise performances of hydraulic pumps. Research on hydraulic pump noise has traditionally focused on the fluid-borne noise sources, and very often the analyses of vibration and noise have been performed focusing on a few local points. This trend results in the lack of investigation on the overall behaviors of vibroacoustic fields of hydraulic pumps, and it has been one of the obstacles to understand the complete mechanisms of noise generation. Moreover, despite the existence of the ISO standards for the determination of noise levels, diverse metrics have been used for the evaluation of noise performances of the pumps, but the adequacy of these metrics has not been carefully examined. In this respect, this paper aims at introducing a way to characterize and interpret the measured vibroacoustic field and providing proper methods which are also capable of applying the ISO standards for the fair assessment of pump noise performances. For the characterization of the vibroacoustic field, operational deflection shapes (ODS) and corresponding radiated sound fields are visualized at harmonics of the pumping frequency by using a spectral analysis. Observations are made regarding the motions of the pump and its mounting plate and the resultant radiated noise, depending on the frequency, as well as their correlation. A numerical analysis using the Rayleigh integral equation is also performed to further investigate the contribution of the mounting plate motion on the noise radiation. For the evaluation of noise performance, two different units are tested at multiple operating conditions, and comparisons are made based on their measured sound power levels (SWLs) and sound pressure levels (SPLs). The results emphasize the importance of SWL measurement for the fair noise performance evaluation, and the two methods are proposed as practices to determine the minimum number of measurement points for practicability and to have reliable sound power determination for hydraulic pumps.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献