Abstract
This paper presents an experimental and numerical modal analysis for an external gear pump considering its mounting on a test rig in a laboratory setting. Most of the previous studies on experimental modal analysis (EMA) of hydraulic pumps focused on the modal frequencies to allow model validation. However, the mode shapes of pump bodies have not extensively been discussed. Furthermore, the nature of the pump components assembly and mounting poses some modeling challenges, such as the uncertain material properties of each component, the behavior of the bolted joints, and some critical modeling boundary conditions related to pump mounting. In this regard, the experimentally obtained vibration modes of a reference pump using the least-square complex exponential (LSCE) method are analyzed with an emphasis on the characteristics of the mode shapes. Then, simple modeling strategies are proposed and validated by performing the analysis from the component level to the full assembly. As a result, the mode shapes are categorized depending on the type of motions that the modes exhibit. It is observed that the pump casing does not show any substantial deformation but is close to the rigid body motion. Moreover, without considerably increasing model complexities, the proposed numerical approach provides reasonable accuracy with average errors in modal frequencies of 6%, as well as good agreement in terms of mode shapes. The vibration reduction strategy is briefly discussed based on the measured mode shapes, and the proposed modeling approaches can be useful to study external gear pumps with minimal model complexities yet allowing reasonable result accuracy.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献