An Adaptive Model-Based MPPT Technique with Drift-Avoidance for Grid-Connected PV Systems

Author:

Ahmed MostafaORCID,Abdelrahem MohamedORCID,Harbi IbrahimORCID,Kennel Ralph

Abstract

In this article, a modified control structure for a single-stage three phase grid-connected photovoltaic (PV) system is presented. In the proposed system, the maximum power point tracking (MPPT) function is developed using a new adaptive model-based technique, in which the maximum power point (MPP) voltage can be precisely located based on the characteristics of the PV source. By doing so, the drift problem associated with the traditional perturb and observe (P&O) technique can be easily solved. Moreover, the inverter control is accomplished using a predictive dead-beat function, which directly estimates the required reference voltages from the commanded reference currents. Then, the reference voltages are applied to a space vector pulse width modulator (SVPWM) for switching state generation. Furthermore, the proposed inverter control avoids the conventional and known cascaded loop structure of the voltage oriented control (VOC) method by elimination of the outer PI controller, and hence the overall control strategy is simplified. The proposed system is compared with different MPPT techniques, including the conventional P&O method and other techniques intended for drift avoidance. The evaluation of the suggested control methodology depends on various radiation profiles created in MATLAB. The proposed technique succeeds at capturing the maximum available power from the PV source with no drift in comparison with other methods.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3