On‐board energy scheduling optimization algorithm for nanosatellites

Author:

Vega Martinez Sara1,Seman Laio Oriel23ORCID,Morsch Filho Edemar4,Slongo Leonardo Kessler1ORCID,Bezerra Eduardo Augusto1

Affiliation:

1. Centro Tecnologico Universidade Federal de Santa Catarina Florianópolis Brazil

2. Universidade do Vale do Itajai Itajaí Brazil

3. Pontifícia Universidade Católica do Paraná Curitiba Brazil

4. Universidade Estadual Paulista “Júlio de Mesquita Filho” São João da Boa Vista Brazil

Abstract

SummaryThis work proposes a real‐time and online energy scheduling optimization algorithm for nanosatellites operating with a direct energy transfer (DET) architecture. The goal of the algorithm is to optimize energy utilization by maximizing energy harvesting, meeting task deadlines and priorities, and ensuring a minimum quality of service (QoS) for the system. The algorithm is composed of a modified perturb and observe algorithm to reach the best energy efficiency point of the solar panels, a task prioritization algorithm to guarantee their times and minimum QoS, and a backpack optimization problem to maximize the energy efficiency of the satellite. To demonstrate the effectiveness of the proposed algorithm, simulations of a nanosatellite operating in a given orbit, attitude, and thermal parameters were conducted and compared to other task scheduling strategies. The results showed that the proposed energy scheduling algorithm had the best performance in terms of energy balance and average power consumption, with an energy balance up to 16% higher compared to the other tested strategies. This demonstrates the ability of the proposed algorithm to optimize power consumption and energy utilization, as well as efficiently schedule tasks to maximize energy harvesting. The proposed energy scheduling optimization algorithm has the potential to be a useful tool for the design and optimization of future satellite missions and could potentially guide the design of electrical power systems for new CubeSat missions operating with a DET architecture. The algorithm's ability to optimize energy utilization and ensure a minimum QoS for the system could improve the overall efficiency and performance of the satellite.

Publisher

Wiley

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computer Science Applications,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3