Interfacial Adsorption Mechanism of Diethyldithiocarbamate in High-Sulfur Residue Flotation

Author:

Liu Hong1,He Jing1,Luo Tao1,Dai Jie1,Cao Shuqiong1,Yang Shenghai12,Tang Chaobo1,Wang Changhong1ORCID,Chen Yongming12ORCID

Affiliation:

1. School of Metallurgy and Environment, Central South University, Changsha 410083, China

2. Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, Changsha 410083, China

Abstract

Diethyldithiocarbamate (DDTC) is employed in the sulfide ore flotation process due to its excellent collection performance. Herein, we investigated the interfacial adsorption behavior of DDTC on the four main mineral phases of high-sulfur residue: sulfur, pyrite, sphalerite, and lead sulfate. The adsorption behavior of DDTC and H2O, namely, the adsorption structure and the energy and electron localization function cross section, were explored using density function theory calculation. The results were helpful in constructing a coadsorption model of DDTC and H2O, which was validated by pure mineral flotation and characterization of Fourier transform infrared spectra. The coadsorption model indicated that the adsorption of DDTC on sulfur, sphalerite, and lead sulfate was weak with physical bonding, while its adsorption on pyrite was strong with chemical bonding. Practical bench-scale high-sulfur residue flotation was performed, and the result was different from that obtained from pure mineral flotation. Our developed model predictions and mineral fugacity pattern analysis were synergistically used to explain this difference. Overall, this work proposes for the first time a coadsorption model of DDTC and H2O and provides important insights into interfacial adsorption in high-sulfur residue flotation.

Funder

National Key Research and Development Program of China

Science and Technology Innovation Program of Hunan Province

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3