Effect and mechanism on the flotation desulfurization of high-sulfur bauxite by using the mixed collector of PYDH

Author:

Li Han,Zhang Qin

Abstract

Desulfurization of high sulfur bauxite is an important issue in Bayer alumina production. In this study, by using two anionic sulphydryl collectors (HX, HD) as mixed collectors (PYDH), the selectivity of flotation separation between pyrite and diaspore was improved, thereby reducing the sulfur content of high sulfur bauxite and ultimately meeting the production requirements of Bayer alumina. The findings showed that under the optimized conditions of 500 g/Mg collector, 150 g/Mg inhibitor, 200 g/Mg activator, 100 g/Mg foaming agent, and a slurry pH of 9, the sulfur content of bauxite can be reduced from 3.35% to 0.33% through one rough selection, one fine selection, and one scavenging flotation. Moreover, the interaction mechanism between mixed collectors and pyrite was studied through scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Zeta potential analysis, and contact angle testing. SEM-EDS research confirmed that PYDH adsorbed on the surface of pyrite. The contact angle measurement analysis showed that compared to individual collectors, pretreated pyrite with mixed collectors had better hydrophobicity. Zeta potential, FTIR, and XPS results indicated that PYDH selectively adsorbed pyrite through chemical adsorption. The mixed collector PYDH is an effective collector for pyrite in high sulfur bauxite flotation desulfurization.

Publisher

Politechnika Wroclawska Oficyna Wydawnicza

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3