Biomimetic Rose Petal Structures Obtained Using UV-Nanoimprint Lithography

Author:

Oopath Sruthi VenugopalORCID,Baji AvinashORCID,Abtahi Mojtaba

Abstract

This study aims to produce a hydrophobic polymer film by mimicking the hierarchical micro/nanostructures found on the surface of rose petals. A simple and two-step UV-based nanoimprint lithography was used to copy rose petal structures on the surface of a polyurethane acrylate (PUA) film. In the first step, the rose petal was used as a template, and its negative replica was fabricated on a commercial UV-curable polymer film. Following this, the negative replica was used as a stamp to produce rose petal mimetic structures on UV curable PUA film. The presence of these structures on PUA influenced the wettability behavior of PUA. Introducing the rose petal mimetic structures led the inherently hydrophilic material to display highly hydrophobic behavior. The neat PUA film showed a contact angle of 65°, while the PUA film with rose petal mimetic structures showed a contact angle of 138°. Similar to natural materials, PUA with rose petal mimetic structures also displayed the water pinning effect. The water droplet was shown to have adhered to the surface of PUA even when the surface was turned upside down.

Funder

La Trobe University

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3