Study on the High-Efficiency Preparation of Superhydrophobic Polymer Thin Films by Continuous Micro/Nano Imprinting

Author:

Chen Zhi12,Wei Yumeng1,Wu Cheng1,Zhang Guojun2,Han Fenglin1

Affiliation:

1. State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China

2. Guangdong Provincial Key Laboratory of Manufacturing Equipment Digitization, Guangdong HUST Industrial Technology Research Institute, Dongguan 523808, China

Abstract

In order to improve the preparation efficiency, quality stability, and large-area preparation of superhydrophobic thin films, a roll-to-roll continuous micro–nano imprinting method for the efficient preparation of superhydrophobic polymer films is proposed. A wear-resistant mold roller with hierarchical microstructure is prepared by wire electrical discharge machining (WEDM). The rheological filling model is constructed for revealing the forming mechanism of superhydrophobic polymer films during continuous micro/nano imprinting. The effects of imprinting temperature, rolling speed and the surface texture size of the template on the surface texture formation rate of polymer films are analyzed. The experimental results show that, compared with other process methods, the template processed by WEDM shows excellent wear resistance. Moreover, the optimal micro/nano imprinting parameters are the mold temperature of 190 °C (corresponding film temperature of 85 ± 5 °C), rolling speed of 3 rpm and roller gap of 0.1 mm. The maximum contact angle of the polymer film is 154°. In addition, the superhydrophobic polymer thin film has been proven to have good self-cleaning and anti-icing performance.

Funder

Natural Science Foundation of Hunan Province, China

Fundamental Research Funds for the Central Universities of Central South University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3