Lignin-Derived Quinone Redox Moieties for Bio-Based Supercapacitors

Author:

Jyothibasu Jincy ParayangattilORCID,Wang Ruei-Hong,Tien You-Ching,Kuo Chi-ChingORCID,Lee Rong-HoORCID

Abstract

Because of their rapid charging and discharging, high power densities, and excellent cycling life stabilities, supercapacitors have great potential for use in electric vehicles, portable electronics, and for grid frequency modulation. The growing need for supercapacitors that are both efficient and ecologically friendly has generated curiosity in developing sustainable biomass-based electrode materials and electrolytes. Lignin, an aromatic polymer with remarkable electroactive redox characteristics and a large number of active functional groups, is one such candidate for use in renewable supercapacitors. Because its chemical structure features an abundance of quinone groups, lignin undergoes various surface redox processes, storing and releasing both electrons and protons. Accordingly, lignin and its derivatives have been tested as electroactive materials in supercapacitors. This review discusses recent examples of supercapacitors incorporating electrode materials and electrolytes derived from lignin, focusing on the pseudocapacitance provided by the quinone moieties, with the goal of encouraging the use of lignin as a raw material for high-value applications. Employing lignin and its derivatives as active materials in supercapacitor electrodes and as a redox additive in electrolytes has the potential to minimize environmental pollution and energy scarcity while also providing economic benefits.

Funder

The Ministry of Science and Technology (MOST) of Taiwan

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3