Facile, Scalable, Eco-Friendly Fabrication of High-Performance Flexible All-Solid-State Supercapacitors

Author:

Jyothibasu Jincy,Lee Rong-Ho

Abstract

A highly porous freestanding supercapacitor electrode has been fabricated through a simple, inexpensive, bulk-scalable, and environmentally friendly method, without using any extra current collector, binder, or conducting additive. Benefiting from its unique micro-tubular hollow structure with a thin cell wall and large lumen, kapok fiber (KF) was used herein as a low-cost template for the successive growth of polypyrrole (PPy) through in situ chemical polymerization. This PPy-coated KF (KF@PPy) was blended with functionalized carbon nanotubes (f-CNTs) to form freestanding conductive films (KF@PPy/f-CNT) through a simple dispersion and filtration method. The hybrid film featuring the optimal composition exhibited an outstanding areal capacitance of 1289 mF cm−2 at a scan rate of 5 mV s−1. Moreover, an assembled all-solid-state symmetric supercapacitor featuring a PVA/H2SO4 gel electrolyte exhibited not only areal capacitances as high as 258 mF cm−2 (at a scan rate of 5 mV s−1) but also excellent cycling stability (97.4% of the initial capacitance after 2500 cycles). Therefore, this efficient, low-cost, scalable green synthesis strategy appears to be a facile and sustainable way of fabricating high-performance flexible supercapacitors incorporating a renewable cellulose material.

Funder

MOST TAIWAN

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3