Porous Fly Ash/Aluminosilicate Microspheres-Based Composites Containing Lightweight Granules Using Liquid Glass as Binder

Author:

Miryuk OlgaORCID,Fediuk RomanORCID,Amran MugahedORCID

Abstract

The modern energy-saving vector of development in building materials science is being implemented in a complex way through the development of new heat-insulating materials with the simultaneous exclusion of low-ecological cement from them. This article presents the results of the development of resource-saving technology for a heat-insulating composite material. The research is devoted to the development of scientific ideas about the technology and properties of effective cementless lightweight concretes. The aim of the work is to create a heat-insulating composite material based on porous granules and a matrix from mixtures of liquid glass and thermal energy waste. The novelty of the work lies in establishing the patterns of formation of a stable structure of a porous material during thermal curing of liquid glass with technogenic fillers. Studies of liquid glass mixtures with different contents of fly ash and aluminosilicate microspheres revealed the possibility of controlling the properties of molding masses in a wide range. To obtain a granular material, liquid glass mixtures of plastic consistency with a predominance of aluminosilicate microspheres are proposed. The matrix of composite materials is formed by a mobile mixture of liquid glass and a combined filler, in which fly ash predominates. The parameters of heat treatment of granular and composite materials are established to ensure the formation of a strong porous waterproof structure. The possibility of regulating the structure of composite materials due to different degrees of filling the liquid glass matrix with porous granules is shown. A heat-insulating concrete based on porous aggregate has been developed, characterized by the genetic commonality of the matrix and the granular component, density of 380–650 kg/m3, thermal conductivity of 0.095–0.100 W/(m °C) and strength of 3.5–9.0 MPa, resistance under conditions of variable values of humidity and temperature. A basic technological scheme for the joint production of granular and composite materials from liquid glass mixtures is proposed.

Funder

Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efecto de la ceniza de bagazo de caña de azúcar en las propiedades mecánicas del concreto permeable;Salud, Ciencia y Tecnología - Serie de Conferencias;2023-09-21

2. Magnesia composite materials for layered products;Kompleksnoe Ispolʹzovanie Mineralʹnogo syrʹâ/Complex Use of Mineral Resources/Mineraldik Shikisattardy Keshendi Paidalanu;2023-07-05

3. Strong Structure Formation of Ceramic Composites Based on Coal Mining Overburden Rocks;Journal of Composites Science;2023-05-22

4. Experimental effect of pre-treatment of rubber fibers on mechanical properties of rubberized concrete;Journal of Materials Research and Technology;2023-03

5. Service properties of porous liquid glass concrete;E3S Web of Conferences;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3