Thermal Performance of Structural Lightweight Concrete Composites for Potential Energy Saving

Author:

Lee Yeong Huei,Chua Nicholas,Amran Mugahed,Yong Lee YeeORCID,Hong Kueh Ahmad BengORCID,Fediuk RomanORCID,Vatin NikolaiORCID,Vasilev Yuriy

Abstract

Residential consumption dominates the energy expenditure of heating and cooling systems, especially in tropical climates where building envelopes play an important role in energy efficiency. The thermal properties of concrete that are commonly employed as the building envelope material affect directly human comfort in a building. In addressing both the concrete thermal performance and industrial waste issues, this paper experimentally studies the concrete compressive strength and thermal properties used later for comparative energy analysis for human comfort. Four design mixes and a conventional concrete as control specimen are considered utilizing industrial wastes; palm oil fly ash (POFA), lightweight expanded clay aggregate (LECA), oil palm shell (OPS), and quarry dust, as constituents. These mixes are cast for cube compressive strength (to ensure the achievement of structural concrete requirement) and small-scaled wall tests. The measurement of surface temperatures of scaled wall tests is conducted in a polystyrene box to determine the concrete time lag and decrement factor. It is found that the density of concrete governs the compressive strength and that air pockets in the concrete matrix play an essential role as far as the thermal properties are concerned. From the energy analysis, structural lightweight concrete may save approximately 50% of the residential energy consumption.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3