Abstract
Metal coordination-driven nanocomplexes are known to be responsive to physiologically relevant stimuli such as pH, redox, temperature or light, making them well-suited for antitumor drug delivery. The ever-growing demand for such nanocomplexes necessitates the design of a scalable approach for their production. In this study, we demonstrate a novel coordination self-assembly strategy, termed flash nanocomplexation (FNC), which is rapid and efficient for the fabrication of drug-loaded nanoparticles (NPs) in a continuous manner. Based on this strategy, biocompatible chitosan (CS) and Cu2+ can be regarded anchors to moor the antitumor drug (curcumin, Cur) through coordination, resulting in curcumin-loaded chitosan nanocomplex (Cur-loaded CS nanocomplex) with a narrow size distribution (PDI < 0.124) and high drug loading (up to 41.75%). Owing to the excellent stability of Cur-loaded CS nanocomplex at neutral conditions (>50 days), premature Cur leakage was limited to lower than 1.5%, and pH-responsive drug release behavior was realized in acidic tumor microenvironments. An upscaled manufacture of Cur-loaded CS nanocomplex is demonstrated with continuous FNC, which shows an unprecedented method toward practical applications of nanomedicine for tumor therapy. Furthermore, intracellular uptake study and cytotoxicity experiments toward H1299 cells demonstrates the satisfied anticancer efficacy of the Cur-loaded CS nanocomplex. These results confirm that coordination-driven FNC is an effective method that enables the rapid and scalable fabrication of antitumor drugs.
Funder
National Natural Science Foundation of China
Subject
Polymers and Plastics,General Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献