Design and Immunoinformatic Assessment of Candidate Multivariant mRNA Vaccine Construct against Immune Escape Variants of SARS-CoV-2

Author:

Hussain MushtaqORCID,Amanullah Anusha,Aslam Ayesha,Raza Fozia,Arzoo Shabana,Qureshi Iffat Waqar,Waheed Humera,Jabeen Nusrat,Shabbir Sanya,Sayeed Muneeba AhsanORCID,Quraishy Saeed

Abstract

To effectively counter the evolving threat of SARS-CoV-2 variants, modifications and/or redesigning of mRNA vaccine construct are essentially required. Herein, the design and immunoinformatic assessment of a candidate novel mRNA vaccine construct, DOW-21, are discussed. Briefly, immunologically important domains, N-terminal domain (NTD) and receptor binding domain (RBD), of the spike protein of SARS-CoV-2 variants of concern (VOCs) and variants of interest (VOIs) were assessed for sequence, structure, and epitope variations. Based on the assessment, a novel hypothetical NTD (h-NTD) and RBD (h-RBD) were designed to hold all overlapping immune escape variations. The construct sequence was then developed, where h-NTD and h-RBD were intervened by 10-mer gly-ala repeat and the terminals were flanked by regulatory sequences for better intracellular transportation and expression of the coding regions. The protein encoded by the construct holds structural attributes (RMSD NTD: 0.42 Å; RMSD RBD: 0.15 Å) found in the respective domains of SARS-CoV-2 immune escape variants. In addition, it provides coverage to the immunogenic sites of the respective domains found in SARS-CoV-2 variants. Later, the nucleotide sequence of the construct was optimized for GC ratio (56%) and microRNA binding sites to ensure smooth translation. Post-injection antibody titer was also predicted (~12000 AU) to be robust. In summary, the construct proposed in this study could potentially provide broad spectrum coverage in relation to SARS-CoV-2 immune escape variants.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3