Design and Engineering of Natural Cellulose Fiber-Based Biomaterials with Eucalyptus Essential Oil Retention to Replace Non-Biodegradable Delivery Systems

Author:

Morais Flávia P.ORCID,Curto Joana M. R.ORCID

Abstract

This work aims at the design and engineering of sustainable biomaterials based on natural fibers to replace non-renewable fiber sources in the development of non-woven delivery systems. Cellulose fibers were used as the main support to produce multi-structured materials with the incorporation of microfibrillated cellulose (MFC) as an additive. A 3D carboxymethylcellulose matrix retaining a natural bioactive product, eucalyptus essential oil, (CMC/EO), with controlled release functionalities, was also applied to these materials using bulk and spray coating methodologies. Additionally, using a 3D modeling and simulation strategy, different interest scenarios were predicted to design new formulations with improved functional properties. Overall, the results showed that MFC provided up to 5% improved strength (+48%) at the expense of reduced softness (−10%) and absorbency (−13%) and presented a good potential to be used as an additive to maximize natural eucalyptus fibers content in formulations. The addition of CMC/EO into formulations’ bulk revealed better strength properties (21–28%), while its surface coating improved absorption (23–25%). This indicated that both application methods can be used in structures proposed for different sustainable applications or a more localized therapy, respectively. This optimization methodology consists of a competitive benefit to produce high-quality functionalized biomaterials for added-value applications.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3