A Comparative Study on Bio-Based PU Foam Reinforced with Nanoparticles for EMI-Shielding Applications

Author:

Selvaraj Vinoth Kumar,Subramanian Jeyanthi

Abstract

Today, most commercial polyols used to make polyurethane (PU) foam are produced from petrochemicals. A renewable resource, castor oil (CO), was employed in this study to alleviate concerns about environmental contamination. This study intends to fabricate a bio-based and low-density EMI-defending material for communication, aerospace, electronics, and military appliances. The mechanical stirrer produces the flexible bio-based polyurethane foam and combines it with nanoparticles using absorption and hydrothermal reduction processes. The nanoparticles used in this research are graphite nanoplates (GNP), zirconium oxide (ZrO2), and bamboo charcoal (BC). Following fabrication, the samples underwent EMI testing using an EMI test setup with model number N5230A PNA-L. The EMI experimental results were compared with computational simulation using COMSOL Multiphysics 5.4 and an optimization tool using response surface methodology. A statistical design of the experimental approach is used to design and evaluate the experiments systematically. An experimental study reveals that a 0.3 weight percentage of GNP, a 0.3 weight percentage of ZrO2, and a 2.5 weight percentage of BC depict a maximum EMI SE of 28.03 dB in the 8–12 GHz frequency band.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3