Molecular Simulations and Network Analyses of Surface/Interface Effects in Epoxy Resins: How Bonding Adapts to Boundary Conditions

Author:

Konrad JulianORCID,Moretti Paolo,Zahn DirkORCID

Abstract

In this study, we unravel the atomic structure of a covalent resin near boundaries such as surfaces and composite constituents. For this, a molecular simulation analysis of epoxy resin hardening under various boundary conditions was performed. On the atomic level of detail, molecular dynamics simulations were employed to study crosslinking reactions and self-organization of the polymer network within nm scale slab models. The resulting structures were then coarsened into a graph theoretical description for connectivity analysis of the nodes and combined with characterization of the node-to-node vector orientation. On this basis, we show that the local bonding of epoxy resins near interfaces tends to avoid under-coordinated linker sites. For both epoxy–vacuum surface models and epoxy–silica/epoxy cellulose interfaces, we find almost fully cured polymer networks. These feature a local increase in network linking lateral to the surface/interface, rather than the dangling of unreacted epoxy groups. Consequently, interface tension is low (as compared to the work of separating bulk epoxy), and the reactivity of the resin surface appears negligible.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3