High-Voltage FDS of Thermally Aged XLPE Cable and Its Correlation with Physicochemical Properties

Author:

Wang Haoyue,Sun Maolun,Zhao Kaijie,Wang Xiaowei,Xu Qilong,Wang Wei,Li Chengrong

Abstract

This paper aims to investigate the influence of thermal aging on a crosslinked polyethylene (XLPE) cable, and the relationships between the macroscopical high-voltage dielectric and the microscopical physicochemical properties are also elucidated. To better simulate thermal aging under working condition, the medium-voltage-level cable is subjected to accelerated inner thermal aging for different aging times. Then, high-voltage frequency domain spectroscopy (FDS) (cable sample) and analyses of microscopic physical and chemical properties (sampling from the cable), including Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and elongation at the break (EAB), are conducted at different cable aging stages. The dielectric test results show that after a certain aging time, the high-voltage FDS curves of the cable have layered characteristics, and this phenomenon is more obvious as the aging degree increases. Moreover, the slope and the integral of the high-voltage FDS curves rise with aging time. The mechanism is deduced by the physicochemical results that thermo-oxidative aging results in increasing polar groups and dislocation defects in the crystal region, which leads to the above phenomenon. On the one hand, the appearance of polar groups increases the density of the dipole. On the other hand, the destruction of the crystal region increases the probability and amplitude of dipole reversal. In addition, the breaking of molecular bonds and the increase in the amorphous phase also reduce the rigidity of the XLPE molecular main chain. The above factors lead to obvious delamination and larger dielectric parameters of the thermally aged cable. Finally, according to the experimental results, an on-site diagnosis method of cable insulation thermal aging based on high-voltage FDS is discussed.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3