Space Charge Behavior of Thermally Aged Polyethylene Insulation of Track Cables

Author:

Qiao Zhichao,Wu WangsongORCID,Wang Zhaowei,Zhang LingORCID,Zhou Yuanxiang

Abstract

The interface of multi-layer insulation is a relatively weak point in the cable system during the long-term high-temperature service. Space charge is prone to continuously accumulate in the interface area, leading to the deterioration of electrical properties and even insulation failure in advance. The knowledge about thermal oxidation of polyethylene (PE) materials at the molecular level is still urgent to explore. Herein, single-layer and double-layer PE insulation, representing the typical insulation structure of frequency-shift pulse voltage track cables, were prepared and thermally aged in the oven for up to 360 h. Thermal, mechanical, electrical, and space charge characterizations were systematically carried out. Thermogravimetric analyzer and oxidation induced temperature (OIT) measurements confirmed that LDPE’s thermal-oxidative aging temperature range was the lowest among the three PE groups in the O2 atmosphere. After 360 h thermal aging, the tensile property of HDPE material kept relatively stable, while the elongation at break of the other two groups was lower than 50%. Unaged HDPE exhibits apparent charge injection and migration, leading to the severe electric field distortion of 20%. Noticeable charge accumulation can be observed at the unaged double-layer sample interface due to the mismatching of DC conductivity, which play a significant role in the aged double-layer samples. This work utilizes precise thermal analysis to provide new information about the resistance ability of thermal oxidation of LDPE, FPE, and HDPE, and its influence on space charge behaviors, which is helpful for the insulation design and evaluation in cable applications.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3