Research on the Thermal Aging Behaviors of LDPE/TiO2 Nanocomposites

Author:

Liu Jun1,Wang Youyuan1,Xiao Kun1ORCID,Zhang Zhanxi1

Affiliation:

1. State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China

Abstract

The ability of antithermal aging of LDPE/TiO2 nanocomposites was investigated through SEM, FTIR, DSC, and dielectric properties in this paper. The results of SEM images showed that the thermal aging had a significant influence on the structure of Pure-LDPE and LDPE/TiO2 samples. The measurement of FTIR showed that the content of hydroxyl and carboxyl increased with thermal aging, but the time of emerging aging characteristic peaks for the LDPE/TiO2 samples was delayed. The DSC measurement indicated that filling TiO2 nanoparticles changed the crystallization behavior of LDPE, played a role of heterogeneous nucleation during the process of recrystallization, and improved the crystallinity of LDPE/TiO2. Similarly, the aged LDPE/TiO2 samples had lower permittivity and dissipation factor compared to the aged Pure-LDPE samples. All the results had indicated the LDPE/TiO2 samples had the significant ability of antithermal aging, especially the LDPE/TiO2-0.5 samples with good dispersion of nanoparticles. A new model was proposed to illustrate the antithermal aging behaviors of LDPE/TiO2 samples, which shows that the TiO2 nanoparticles play a role of “crosslinking points” between LDPE molecular chains, increasing the density of crystal structure and reducing oxygen diffusion into materials to break molecular structure.

Funder

National Key Basic Research Program of China

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3