Electrocrystallization of Calcium Oxalate on Electrospun PCL Fibers Loaded with Phytic Acid as a Template

Author:

Arce Tatiana Zegers,Yazdani-Pedram MehrdadORCID,Neira-Carrillo AndrónicoORCID

Abstract

Crystallization occurs widely in living organisms where different organs could associate with the calcification process, such as the formation of calcium oxalate (CaOx) calculi in the urinary tract. However, the pathogenesis and the role of an inhibitor in the pathological processes involved in urolithiasis is poorly understood. Therefore, the use of phytic acid (PA) as an inhibitor for the organic fibrillar matrix is a novel approach to inhibit the formation of pathological CaOx crystals. Herein, electrospun polymer fiber meshes of polycaprolactone (PCL) with random (R) and aligned (A) fiber orientations containing PA were prepared by electrospinning, and their role as a 3D organic template in in vitro CaOx crystallization was investigated. CaOx crystals were generated on conductive tin indium oxide (ITO)-modified glass with R-PCL and A-PCL fibers in the presence of PA through an electrocrystallization (EC) procedure. This study provides a simple electrochemical approach to evaluate the role of PA as an inhibitor in the nucleation of pathological CaOx crystals. The resulting CaOx crystals were analyzed by chrono-potentiometry, optical microscopy (OM), scanning electron microscopy (SEM), and X-ray diffraction (XRD). We found that PA and the fiber orientations are key factors in the nucleation and crystal growth of CaOx, achieving the stabilization of healthy CaOx crystal and the inhibition of the pathological crystal form.

Funder

Fondecyt

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference30 articles.

1. On Biomineralization;Lowenstam,1989

2. Introduction: Biomineralization

3. Biomineralization: Cell Biology and Mineral Deposition;Simkiss,1989

4. Biomineralization Principles and Concepts in Bioinorganic Materials Chemistry;Mann,2001

5. An Overview of Biomineralization Processes and the Problem of the Vital Effect

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3