Preparation of Cellulose-Based Flocculant and Its Application in the Enrichment of Vitamin K2 in Fermentation Supernatant

Author:

Ma Guoliang,Zheng Zhiming,Wang Han,Wang Li,Zhao Genhai,Tang Hengfang,Ding Xiumin,Wang Peng

Abstract

Nutritional food supplements and pharmaceutical products produced with vitamin K2 as raw materials a very promising market in the global scope. The main production method of vitamin K2 is microbial fermentation, but approximately 50% of vitamin K2 synthesized by the main production strain Bacillus subtilis natto exists in extracellular form, which is not easy to separate and extract. In order to solve this problem, in this study, we synthesized a novel cellulose flocculant, MCC-g-LMA, by grafting reaction using microcrystalline cellulose (MCC) and lauryl methacrylate (LMA) as monomers, and ammonium persulfate as an initiator to flocculate VK2 from the fermentation supernatant. The flocculant was characterized by Fourier transform infrared spectroscopy (FTIR), elemental analysis, and scanning electron microscopy (SEM), and the grafting reaction was successful. When the flocculant dosage was 48.0 mg/L and pH was 5.0, the flocculation rate of the MCC-g-LMA on the fermentation supernatant reached 85.3%, and the enrichment rate of VK2 reached 90.0%. Furthermore, we explored the flocculation mechanism of VK2 by the MCC-g-LMA and speculated that the flocculation mechanism mainly included adsorption bridging, hydrophobic association and net trapping and sweep effect. In this study, the extraction method for trace high-value biological products in the fermentation supernatant was improved, which provided a method and theoretical basis for the efficient separation and purification of VK2 and other terpenoids.

Funder

China National Key Research and Development Program

Natural Science Foundation of Anhui Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3