Bioconversion Process of Polyethylene from Waste Tetra Pak® Packaging to Polyhydroxyalkanoates

Author:

Ekere ItohowoORCID,Johnston BrianORCID,Tchuenbou-Magaia FidelineORCID,Townrow DavidORCID,Wojciechowski Szymon,Marek AdamORCID,Zawadiak Jan,Duale KhadarORCID,Zieba MagdalenaORCID,Sikorska Wanda,Adamus GrazynaORCID,Goslar TomaszORCID,Kowalczuk MarekORCID,Radecka IzaORCID

Abstract

Presented herein are the results of a novel recycling method for waste Tetra Pak® packaging materials. The polyethylene (PE-T) component of this packaging material, obtained via a separation process using a “solvents method”, was used as a carbon source for the biosynthesis of polyhydroxyalkanoates (PHAs) by the bacterial strain Cupriavidus necator H16. Bacteria were grown for 48–72 h, at 30 °C, in TSB (nitrogen-rich) or BSM (nitrogen-limited) media supplemented with PE-T. Growth was monitored by viable counting. It was demonstrated that C. necator utilised PE-T in both growth media, but was only able to accumulate 40% w/w PHA in TSB supplemented with PE-T. Only 1.5% w/w PHA was accumulated in the TSB control, and no PHA was detected in the BSM control. Extracted biopolymers were characterised by nuclear magnetic resonance (NMR), Fourier-transform infrared (FTIR) spectroscopy, electrospray tandem mass spectrometry (ESI-MS/MS), gel permeation chromatography (GPC), and accelerator mass spectrometry (AMS). The characterisation of PHA by ESI-MS/MS revealed that PHA produced by C. necator in TSB supplemented with PE-T contained 3-hydroxybutyrate, 3-hydroxyvalerate, and 3-hydroxyhexanoate co-monomeric units. AMS analysis also confirmed the presence of 96.73% modern carbon and 3.27% old carbon in PHA derived from Tetra Pak®. Thus, this study demonstrates the feasibility of our proposed recycling method for waste Tetra Pak® packaging materials, alongside its potential for producing value-added PHA, and the ability of 14C analysis in validating this bioconversion process.

Funder

University of Wolverhampton Research Investment Fund

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3