Abstract
Wearable devices such as data gloves have experienced tremendous growth over the past two decades. It is vital to develop flexible sensors with fast response, high sensitivity and high stability for intelligent data gloves. Therefore, a tractable low-cost flexible data glove with self-calibration function based on a space-division multiplexed flexible optical fiber sensor is proposed. A simple, stable and economical method was used to fabricate flexible silicone rubber fiber for a stretchable double-layered coaxial cylinder. The test results show that the fiber is not sensitive to the temperature range of (20~50 °C) and exhibits excellent flexibility and high stability under tensile, bending and torsional deformation. In addition, the signal detection part of the data glove enables compact and efficient real-time information acquisition and processing. Combined with a self-calibration function that can improve the accuracy of data acquisition, the data glove can be self-adaptive according to different hand sizes and bending habits. In a gesture capture test, it can accurately recognize and capture each gesture, and guide the manipulator to make the same action. The low-cost, fast-responding and structurally robust data glove has potential applications in areas such as sign language recognition, telemedicine and human–robot interaction.
Funder
Fundamental Research Funds for the Central Universities
National Natural Science Foundation of China
Subject
Polymers and Plastics,General Chemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献