Optimization of Biocomposite Film Based on Whey Protein Isolate and Nanocrystalline Cellulose from Pineapple Crown Leaf Using Response Surface Methodology

Author:

Fitriani FitrianiORCID,Aprilia Sri,Bilad Muhammad RoilORCID,Arahman NasrulORCID,Usman AnwarORCID,Huda NurulORCID,Kobun RovinaORCID

Abstract

This study employed response surface methodology to optimize the preparation of biocomposites based on whey protein isolate, glycerol, and nanocrystalline cellulose from pineapple crown leaf. The effects of different concentrations of nanocrystalline cellulose as a filler and glycerol as a plasticizer on the thickness, the tensile strength, and the elongation at break on the resulting biocomposite films were investigated. The central composite design was used to determine the optimum preparation conditions for biocomposite films with optimum properties. The regression of a second-order polynomial model resulted in an optimum composition consisting of 4% glycerol and 3.5% nanocrystalline cellulose concentrations, which showed a desirability of 92.7%. The prediction of the regression model was validated by characterizing the biocomposite film prepared based on the optimum composition, at which the thickness, tensile strength, and elongation at break of the biocomposite film were 0.13 mm, 7.16 MPa, and 39.10%, respectively. This optimum composition can be obtained in range concentrations of glycerol (4–8%) and nanocrystalline cellulose (3–7%). Scanning electron microscope images showed that nanocrystalline cellulose dispersed well in the pure whey protein isolate, and the films had a relatively smooth surface. In comparison, a rough and uneven surface results in more porous biocomposite films. Fourier transform infrared spectroscopy revealed that nanocrystalline cellulose and glycerol showed good compatibility with WPI film by forming hydrogen bonds. The addition of nanocrystalline cellulose as a filler also decreased the transparency, solubility, and water vapor permeability and increased the crystallinity index of the resulting biocomposite film.

Funder

Syiah Kuala University

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3