Printing Polymeric Convex Lenses to Boost the Sensitivity of a Graphene-Based UV Sensor

Author:

Kim JonghyunORCID,Shin DongwoonORCID,Chang Jiyoung

Abstract

Ultraviolet (UV) is widely used in daily life as well as in industrial manufacturing. In this study, a single-step postprocess to improve the sensitivity of a graphene-based UV sensor is studied. We leverage the advantage of electric-field-assisted on-demand printing, which is simply applicable for mounting functional polymers onto various structures. Here, the facile printing process creates optical plano-convex geometry by accelerating and colliding a highly viscous droplet on a micropatterned graphene channel. The printed transparent lens refracts UV rays. The concentrated UV photon energy from a wide field of view enhances the photodesorption of electron-hole pairs between the lens and the graphene sensor channel, which is coupled with a large change in resistance. As a result, the one-step post-treatment has about a 4× higher sensitivity compared to bare sensors without the lenses. We verify the applicability of printing and the boosting mechanism by variation of lens dimensions, a series of UV exposure tests, and optical simulation. Moreover, the method contributes to UV sensing in acute angle or low irradiation. In addition, the catalytic lens provides about a 9× higher recovery rate, where water molecules inside the PEI lens deliver fast reassembly of the electron-hole pairs. The presented method with an ultimately simple fabrication step is expected to be applied to academic research and prototyping, including optoelectronic sensors, energy devices, and advanced manufacturing processes.

Funder

Keimyung University

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3