Comprehensive Characterization of Solution-Cast Pristine and Reduced Graphene Oxide Composite Polyvinylidene Fluoride Films for Sensory Applications

Author:

Hintermueller Dane,Prakash RaviORCID

Abstract

Pristine and doped polyvinylidene fluoride (PVDF) are actively investigated for a broad range of applications in pressure sensing, energy harvesting, transducers, porous membranes, etc. There have been numerous reports on the improved piezoelectric and electric performance of PVDF-doped reduced graphene oxide (rGO) structures. However, the common in situ doping methods have proven to be expensive and less desirable. Furthermore, there is a lack of explicit extraction of the compression mode piezoelectric coefficient (d33) in ex situ rGO doped PVDF composite films prepared using low-cost, solution-cast processes. In this work, we describe an optimal procedure for preparing high-quality pristine and nano-composite PVDF films using solution-casting and thermal poling. We then verify their electromechanical properties by rigorously characterizing β-phase concentration, crystallinity, piezoelectric coefficient, dielectric permittivity, and loss tangent. We also demonstrate a novel stationary atomic force microscope (AFM) technique designed to reduce non-piezoelectric influences on the extraction of d33 in PVDF films. We then discuss the benefits of our d33 measurements technique over commercially sourced piezometers and conventional piezoforce microscopy (PFM). Characterization outcomes from our in-house synthesized films demonstrate that the introduction of 0.3%w.t. rGO nanoparticles in a solution-cast only marginally changes the β-phase concentration from 83.7% to 81.7% and decreases the crystallinity from 42.4% to 37.3%, whereas doping increases the piezoelectric coefficient by 28% from d33 = 45 pm/V to d33 = 58 pm/V, while also improving the dielectric by 28%. The piezoelectric coefficients of our films were generally higher but comparable to other in situ prepared PVDF/rGO composite films, while the dielectric permittivity and β-phase concentrations were found to be lower.

Funder

Natural Sciences and Engineering Research Council

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3