A Non-Isocyanate Route to Poly(Ether Urethane): Synthesis and Effect of Chemical Structures of Hard Segment

Author:

Shen Ziyun,Zheng LiuchunORCID,Song Danqing,Liu Yi,Li Chuncheng,Liu Jiajian,Xiao YaonanORCID,Wu Shaohua,Zhou Tianbo,Zhang Bo,Lv Xuedong,Mei Qiyong

Abstract

A series of non-isocyanate poly(ether urethane) (PEU) were prepared by an environmentally friendly route based on dimethyl carbonate, diols and a polyether. The effect of the chemical structure of polyurethane hard segments on the properties of this kind of PEU was systematically investigated in this work. Polyurethane hard segments with different structures were first prepared from hexamethylene di-carbamate (BHC) and different diols (butanediol, hexanediol, octanediol and decanediol). Subsequently, a series of non-isocyanate PEU were obtained by polycondensation of the polyurethane hard segments with the polyether soft segments (PTMG2000). The PEU were characterized by GPC, FT-IR, 1H NMR, DSC, WAXD, SAXS, AFM and tensile testing. The results show that the urea groups generated by the side reaction affect the degree of crystallization of hard segments by influencing the hydrogen bonding of the hard segments molecular chains. The degree of hard segment crystallization, in turn, affects the thermal and mechanical properties of the polymer. The urea group content is related to the carbon chain length of the diol used for the synthesis of hard segments. When butanediol is applied to synthesize hard segment, the hard segment of the resulting PEU is unable to crystallize. Therefore, the tensile strength and modulus of elasticity of butanediol-based PEU is lowest among three, though it possesses the highest urea group content. When longer octanediol or decanediol is applied to synthesize the hard segment, the hard segments in the resulting polyether-based polyurethane are crystallizable and the resulting PEU possesses higher tensile strength.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3