Non-Isocyanate Aliphatic–Aromatic Poly(carbonate-urethane)s—An Insight into Transurethanization Reactions and Structure–Property Relationships

Author:

Wołosz DominikORCID

Abstract

This study reveals insights into the transurethanization reactions leading to the aliphatic–aromatic non-isocyanate poly(carbonate-urethane)s (NIPCUs) and their structure–property relationships. The crucial impact of the alkyl chain length in 4,4′-diphenylmethylene bis(hydroxyalkyl carbamate) (BHAC) on the process of transurethanization reactions was proved. The strong susceptibility of hydroxyethyl- and hydroxybutyl carbamate moieties to the back-biting side reactions was observed due to the formation of thermodynamically stable cyclic products and urea bonds in the BHACs and NIPCUs. When longer alkyl chains (hydroxypentyl-, hydroxyhexyl-, or hydroxydecyl carbamate) were introduced into the BHAC structure, it was not prone to the back-biting side reaction. Both 1H and 13C NMR, as well as FT-IR spectroscopies, confirmed the presence of carbonate and urethane (and urea for some of the samples) bonds in the NIPCUs, as well as proved the lack of allophanate and ether groups. The increase in the alkyl chain length (from 5 to 10 carbon atoms) between urethane groups in the NIPCU hard segments resulted in the increase in the elongation at break and crystalline phase content, as well as the decrease in the Tg, tensile strength, and hardness. Moreover, the obtained NIPCUs exhibited exceptional mechanical properties (e.g., tensile strength of 40 MPa and elongation at break of 130%).

Funder

Warsaw University of Technology

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3