Fabrication of Highly Conductive Silver-Coated Aluminum Microspheres Based on Poly(catechol/polyamine) Surface Modification

Author:

Hao Mingzheng,Li Lei,Shao Xiaoming,Tian Ming,Zou Hua,Zhang Liqun,Wang Wencai

Abstract

A novel and cost-effective method for the fabrication of highly conductive Al/Ag core-shell structured microspheres was proposed and investigated. The oxidative co-deposition of catechol and polyamine was firstly performed to modify the surface of the aluminum microsphere. Then, a two-step electroless plating was conducted to fabricate the Al/Ag microspheres. During the first step of the electroless plating process, the surface of the aluminum microsphere was deposited with silver nanoparticle seeds using n-octylamine and ethylene glycol. Then, during the second step of the electroless plating process, silver particles grew evenly to form a compact silver shell on the surface of aluminum via a silver mirror reaction. According to the scanning electron microscope and energy dispersive X-ray results, a compact and continuous silver layer was successfully generated on the surface of the aluminum. The valence of the sliver on the surface of the aluminum was confirmed to be zero, based on the X-ray photoelectron spectrometer and X-ray diffractometer analyses. As a result, the as-prepared Al/Ag microspheres exhibited a high conductivity of 10,000 S/cm. The Al/Ag/MVQ composite demonstrated low electrical resistivity of 0.0039 Ω·cm and great electromagnetic interference shielding effectiveness at more than 70 dB against the X-band, and this result suggests that the as-prepared composite is a promising conductive and electromagnetic shielding material.

Funder

National Natural Science Foundation of China

Fundamental Research Program of Shanxi Province

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3