Understanding Electrical Failure of Polyimide-Based Flexible Neural Implants: The Role of Thin Film Adhesion

Author:

Tintelott Marcel,Schander AndreasORCID,Lang Walter

Abstract

The lack of long-term stability of polymeric neural interfaces remains one of the most important and less tackled issues in this research field. To address this issue, we fabricated two test structures based on interdigitated electrodes (IDEs) encapsulated with polyimide (PI). One of the test samples was pretreated with barrel oxygen plasma prior to spin coating of the second PI layer. The second test structure was pretreated using a reactive ion etching (RIE) process. The test samples were immersed in an electrolyte solution at elevated temperatures to mimic the conditions inside the human brain. The samples were then electrically and mechanically stressed to accelerate their degradation. Real-time monitoring of the electrical insulation stability was used to compare the impact of the pretreatment on the long-term stability. Barrel-plasma-activated test samples showed a mean lifetime of 1.5 days, whereas RIE pretreatment increased the mean lifetime to 24 days. Therefore, RIE-pretreated test samples exhibited 16 times longer mean stability compared to purely chemically activated test samples. Furthermore, the electrical measurements were correlated with mechanical adhesion tests. Chemically activated test samples showed significant delamination, whereas RIE pretreatment enhanced the adhesion, and no delamination could be observed. The correlation of these investigations suggests that the adhesion between different layers is higher following RIE pretreatment compared to pretreatment with chemical barrel plasma. In conclusion, the adhesion between the two PI foils seems to play a key role in the long-term stability of such devices.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference40 articles.

1. De viribus electricitatis in motu musculari. Commentarius;Galvani;Bonoiensi Sci. Artium Intituo Acad. Comment.,1791

2. Messungen über Fortpflanzungsgeschwindigkeit der Reizung in den Nerven;von Helmholtz;Archiv. Anat. Physiol. Wiss. Med.,1852

3. Action Potentials Recorded from Inside a Nerve Fibre

4. Delays in neural processing during working memory encoding in normal aging

5. Probing Changes in Neural Interaction During Adaptation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3