Abstract
Biocompatible electrically conducting chitosan-based films filled with single-wall carbon nanotubes were obtained. Atomic force microscopic studies of the free surface topography revealed a change in the morphology of chitosan films filled with single-wall carbon nanotubes. Introducing 0.5 wt.% of single-wall carbon nanotubes into chitosan results in an increase in tensile strength of the films (up to ~180 MPa); the tensile strain values also rise up to ~60%. It was demonstrated that chitosan films containing 0.1–3.0 wt.% of single-wall carbon nanotubes have higher conductivity (10 S/m) than pure chitosan films (10−11 S/m). The investigation of electrical stimulation of human dermal fibroblasts on chitosan/single-wall carbon nanotubes film scaffolds showed that the biological effect of cell electrical stimulation depends on the content of single-walled carbon nanotubes in the chitosan matrix.
Funder
Russian Science Foundation
Subject
Polymers and Plastics,General Chemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献