Influence of CNT Length on Dispersion, Localization, and Electrical Percolation in a Styrene-Butadiene-Based Star Block Copolymer

Author:

Staudinger Ulrike,Janke AndreasORCID,Steinbach Christine,Reuter Uta,Ganß Martin,Voigt OliverORCID

Abstract

This study followed the approach of dispersing and localizing carbon nanotubes (CNTs) in nanostructured domains of block copolymers (BCPs) by shortening the CNTs via ball milling. The aim was to selectively tune the electrical and mechanical properties of the resulting nanocomposites, e.g., for use as sensor materials. Multiwalled carbon nanotubes (MWCNTs) were ground into different size fractions. The MWCNT length distribution was evaluated via transmission electron microscopy and dynamic light scattering. The nanostructure of the BCPs and the glass transition temperatures of the PB-rich and PS phases were not strongly affected by the addition of CNTs up to 2 wt%. However, AFM and TEM investigations indicated a partial localization of the shortened CNTs in the soft PB-rich phase or at the interface of the PB-rich and PS phase, respectively. The stress-strain behavior of the solution-mixed composites differed little from the mechanical property profile of the neat BCP and was largely independent of CNT amount and CNT size fraction. Significant changes could only be observed for Young’s modulus and strain at break and may be attributed to CNT localization and small changes in morphology. For nanocomposites with unmilled CNTs, the electrical percolation threshold was less than 0.1 wt%. As the CNTs were shortened, the resistivity increased and the percolation threshold shifted to higher CNT contents. Composites with CNTs ground for 7.5 h and 13.5 h showed no bulk conductivity but significantly decreased surface resistivity on the bottom side of the films, which could be attributed to a sedimentation process of the grind and thereby highly compressed CNT agglomerates during evaporation.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3