A Study on the O2 Plasma Etching Method of Spray-Formed SWCNT Films and Their Utilization as Electrodes for Electrochemical Sensors

Author:

Kim Jinkyeong1ORCID,Han Ji-Hoon2,Kim Joon Hyub1

Affiliation:

1. Department of Nanomechatronics Engineering, Pusan University, 2 Busandaehak-ro 63 Beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea

2. KIURI Center for Hydrogen Based Next Generation Mechanical System, Inha University, Incheon 22212, Republic of Korea

Abstract

In this study, we analyzed the morphological changes and molecular structure changes on the surface of single-walled carbon nanotube (SWCNT) films during oxygen plasma (O2) etching of SWCNT surfaces formed by the spray method and analyzed their potential use as electrochemical electrodes. For this purpose, a SWCNT film was formed on the surface of a glass substrate using a self-made spray device using SWCNT powder prepared with DCB as a solvent, and SEM, AFM, and XPS analyses were performed as the SWCNT film was O2 plasma etched. SEM images and AFM measurements showed that the SWCNT film started etching after about 30 s under 50 W of O2 plasma irradiation and was completely etched after about 300 s. XPS analysis showed that as the O2 plasma etching of the SWCNT film progressed, the sp2 bonds representing the basic components of graphite decreased, the sp3 bonds representing defects increased, and the C–O, C=O, and COO peaks increased simultaneously. This result indicates that the SWCNT film was etched by the O2 plasma along with the oxygen species. In addition, electrochemical methods were used to verify the damage potential of the remaining SWCNTs after O2 plasma etching, including cyclic voltammetry, Randles plots, and EIS measurements. This resulted in a reversible response based on perfect diffusion control in the cyclic voltammetry, and an ideal linear curve in the Randles plot of the peak current versus square root scan rate curve. EIS measurements also confirmed that the charge transfer resistance of the remaining SWCNTs after O2 plasma etching is almost the same as before etching. These results indicate that the remaining SWCNTs after O2 plasma etching do not lose their unique electrochemical properties and can be utilized as electrodes for biosensors and electrochemical sensors. Our experimental results also indicate that the ionic conductivity enhancement by O2 plasma can be achieved additionally.

Funder

Ministry of Culture, Sports and Tourism

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3