Effects of Mung Bean (Vigna radiata) Protein Isolate on Rheological, Textural, and Structural Properties of Native Corn Starch

Author:

Tarahi MohammadORCID,Hedayati Sara,Shahidi FakhriORCID

Abstract

It is critical to understand the starch–protein interactions in food systems to obtain products with desired functional properties. This study aimed to investigate the influence of mung bean protein isolate (MBPI) on the rheological, textural, and structural properties of native corn starch (NCS) and their possible interactions during gelatinization. The dynamic rheological measurements showed a decrease in the storage modulus (G’) and loss modulus (G”) and an increase in the loss factor (tan δ), by adding MBPI to NCS gels. In addition, the textural properties represented a reduction in firmness after the addition of MBPI. The Scanning electron microscope (SEM) images of the freeze-dried NCS/MBPI gels confirmed that the NCS gel became softer by incorporating the MBPI. Moreover, X-ray diffraction (XRD) patterns showed a peak at 17.4°, and the relative crystallinity decreased with increasing MBPI concentrations. The turbidity determination after 120 h refrigerated storage showed that the addition of MBPI could reduce the retrogradation of NCS gels by interacting with leached amylose. Additionally, the syneresis of NCS/MBPI gels decreased at 14 days of refrigerated storage from 60.53 to 47.87%.

Funder

Vice Chancellor for Research and Technology, Shiraz University of Medical Sciences

Ferdowsi University of Mashhad

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3