Copolymerization-Regulated Hydrogen Bonds: A New Routine for High-Strength Copolyamide 6/66 Fibers

Author:

Wang Zichao,Song Ming,Li Xilin,Chen Jizong,Liang Tiexian,Chen Xin,Yan Yurong

Abstract

Hydrogen bond interactions are important for nylon fibers, which improve its mechanical properties and crystallization behavior, while hindering the movement and orientation of the molecular chain during the drawn process. In this study, hexamethylene adipamide was used as the second monomer in copolymerization with ε-caprolactam to obtain copolyamide 6/66 (CoPA), and high-tenacity fibers with a maximum value up to 8.0 cN/dtex were achieved by a multi-step drawn and thermal setting process. Results show that the hexamethylene–adipamide ratio affected the draw ratio (DR) of the as-spun fiber, on the tenacity of final high-performance fiber, and on crystalline. Both DR and tenacity showed evident increases with the hexamethylene–adipamide ratio up to 6% in CoPA and then changed smoothly. However, XRD and DSC results illustrate a decreased tendency with regard to crystallinity. The attenuated in-site total reflection Fourier transform infrared (ATR-FTIR) spectra were used to study the hydrogen bond interaction between the C=O group and N–H group and the crystal form of the fiber. Results show that the copolymerization destroyed the regularity of the main chain of CoPA and reduces the interaction of interstrand hydrogen bonds, facilitating the formation of the γ-crystalline form in as-spun fibers, fulfilling the transition from the γ to α crystalline form during the fiber-drawing step because of the release of the C=O group and N–H group from the hydrogen bond interaction at an elevated temperature close to the molten temperature of CoPA, and then reforming during the thermal-setting step which soiled the crystalline and improved the tenacity of the fiber. The copolymerization with a homologous monomer regulates the hydrogen bond interaction, fulfills the high drawn ratio and high tenacity fiber, and provides a new route for high-performance fiber preparation using traditional fiber formation of polymers.

Funder

National Natural Science Foundation of China

Science and Technology Planning Project of Guangdong Province of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3