Electrospun Multilayered Films Based on Poly(3-hydroxybutyrate-co-3-hydroxyvalerate), Copolyamide 1010/1014, and Electrosprayed Nanostructured Silica

Author:

Marcoaldi Chiara1,Pardo-Figuerez Maria1ORCID,Prieto Cristina1ORCID,Arnal Carmen1,Torres-Giner Sergio1ORCID,Cabedo Luis2ORCID,Lagaron Jose M.1ORCID

Affiliation:

1. Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain

2. Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), Avenida de Vicent Sos Baynat s/n, 12071 Castellón, Spain

Abstract

In this research, bio-based electrospun multilayered films for food packaging applications with good barrier properties and close to superhydrophobic behavior were developed. For this purpose, two different biopolymers, a low-melting point and fully bio-based synthetic aliphatic copolyamide 1010/1014 (PA1010/1014) and the microbially synthesized poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and food-contact-complying organomodified silica (SiO2) nanostructured microparticles, were processed by electrospinning. The production of the multilayer structure was finally obtained by means of a thermal post-treatment, with the aim to laminate all of the components by virtue of the so-called interfiber coalescence process. The so developed fully electrospun films were characterized according to their morphology, their permeance to water vapor and oxygen, the mechanical properties, and their water contact angle properties. Interestingly, the annealed electrospun copolyamide did not show the expected improved barrier behavior as a monolayer. However, when it was built into a multilayer form, the whole assembly exhibited a good barrier, an improved mechanical performance compared to pure PHBV, an apparent water contact angle of ca. 146°, and a sliding angle of 8°. Consequently, these new biopolymer-based multilayer films could be a bio-based alternative to be potentially considered in more environmentally friendly food packaging strategies.

Funder

H2020 EU project USABLE PACKAGING

Spanish Ministry of Science and Universities

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3