Development of Polyhydroxybutyrate-Based Packaging Films and Methods to Their Ultrasonic Welding

Author:

Talaniuk Viktoriia123,Godzierz Marcin13ORCID,Vashchuk Alina2ORCID,Iurhenko Maksym23,Chaber Paweł13ORCID,Sikorska Wanda13,Kobyliukh Anastasiia13,Demchenko Valeriy2,Rogalsky Sergiy4ORCID,Szeluga Urszula13ORCID,Adamus Grażyna13ORCID

Affiliation:

1. Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowska Str. 34, 41-819 Zabrze, Poland

2. E.O. Paton Electric Welding Institute of the National Academy of Sciences of Ukraine, 11. Kazymyr Malevych St., 03680 Kyiv, Ukraine

3. International Polish-Ukrainian Research Laboratory ADPOLCOM, 41-800 Zabrze, Poland

4. Laboratory of Modification Polymers, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of NAS of Ukraine, 50, Kharkivskie Schose, 02160 Kyiv, Ukraine

Abstract

This study developed a technical task associated with the formation of welded joints based on biodegradable polymers and their subsequent physicochemical characterization. The primary objective was to establish the effect of the welding process and modification of natural poly(3-hydroxybutyrate) (PHB) with N,N-dibutylundecenoylamide (DBUA) as a plasticizing agent on the structure and properties of PHB-based biopolymer materials as well as the process and structure of welded joints formation using ultrasonic welding technique. The weldability of biodegradable layers based on PHB and PHB/DBUA mixture was ultrasonically welded and optimized using a standard Branson press-type installation. The effect of the DBUA plasticizer and welding process on the structure of PHB-based biodegradable material was investigated using scanning electron microscopy, X-ray diffraction, FT-IR spectroscopy, differential scanning calorimetry, and thermomechanical analysis. The results confirmed that the DBUA acted as an effective plasticizer of PHB, contributing to lower crystallinity of the PHB/DBUA mixture (63%) in relation to the crystallinity degree of pure PHB film (69%). Ultrasonic welding resulted in an additional increase (approximately 8.5%) in the degree of crystallinity in the PHB/DBUA in relation to the initial PHB/DBUA mixture. The significant shift toward lower temperatures of the crystallization and melting peaks of PHB modified with DBUA were observed using DSC concerning pure PHB. The melt crystallization process of PHB was affected by welding treatment, and a shift toward higher temperature was observed compared with the unwelded PHB/DBUA sample. The butt-welded joints of biodegradable PHB/DBUA materials made using the ultrasonic method tested for tensile strength have damaged the area immediately outside the joining surface.

Funder

Centre of Polymer and Carbon Materials Polish Academy of Sciences

Institute of Macromolecular Chemistry

E.O. Paton Welding Institute of National Academy of Science of Ukraine

European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie

Minister of Science and Higher Education

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3