Study on the Effect of Salt Solution on Durability of Basalt-Fiber-Reinforced Polymer Joints in High-Temperature Environment

Author:

Fan YisaORCID,Wang Xiaopeng,Liu Ye,Liu Zhen,Xi Gaolei,Shangguan Linjian

Abstract

Due to the low price and good comprehensive properties, FRP composite material has become a new type of civil application material in recent years. In this paper, Araldite® 2012 adhesive was used to bond basalt-fiber-reinforced polymer (BFRP), and the durability of its bonded joints was investigated. Experiments were carried out at 80 °C/DI water (deionized water), 80 °C/3.5% NaCl solution (3.5% SS), and 80 °C/5.0% NaCl solution (5.0% SS) at 0- (unaged), 10-, 20-, and 30-day aging. The specimen and BFRP in the environment of 80 °C/DI water, 80 °C/3.5% SS, and 80 °C/5.0% SS found salt solution under the condition of all sample water absorption decreases, and the activity of salt solution chemistry was weaker compared with deionized water. The load–displacement curve of the joint failure was obtained through quasi-static tensile experiments, and it was found that the adhesive would undergo a post-curing reaction that had a positive impact on the stiffness of the joint in a high-temperature environment. At the same time, it was found that the joint failure strength decreased less in the salt solution environment, and deionized water was more destructive than the salt solution. Referring to the change in water absorption, it was found that the change in the mechanical properties of the joint was mainly related to the permeation effect of the polymer. The change in the Tg of adhesive was measured by differential scanning calorimetry (DSC). It was found that Tg would decrease after aging, and the change in Tg was mainly related to the mobility of the molecular chain. Thermogravimetric analysis (TGA) was used to analyze the thermal behavior of the epoxy resin and some organic matter, and the main weight loss stage was 340–450 °C, which was the complete degradation of epoxy resin and some organic matter. Macro visual and microscopic scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDX) were used to analyze the failure section, and it can be concluded that the failure mode of joint tear failure transitioned to cohesion in the late–mixed interface failure, at the visible interface between the fiber and the resin matrix.

Funder

the Technology Project of Henan Province

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3