Abstract
Compared with polyolefins that are used as single-use plastics, polylactic acid (PLA) has a lower tear strength in films. The relationship between the tear strength and the higher-order structure of films was investigated using PLA films that absorbed moisture at 30 °C and 95% relative humidity (RH) or that had been annealed under reduced pressure conditions. Although the mobile amorphous (MAm) amount did not change under high humidity, the film became brittle due to enthalpy relaxation. The crystallization by annealing also caused embrittlement, and the MAm amount decreased to 10%. The displacement until tearing is lowered from 2.5 to 0.5 mm in both cases. However, in situ retardation measurements revealed that there was a significant difference in the fracture morphology of the torn tip. When crystallized, the molecular chains and crystals are oriented in the tensile direction of the film, and a fragmented structure is observed in the ligament. Embrittlement due to enthalpy relaxation caused a weak orientation perpendicular to the tensile direction of the film, and cracks occurs along with this orientation.
Funder
New Energy and Industrial Technology Development Organization
Subject
Polymers and Plastics,General Chemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献