Experimental Investigation and Optimization of Turning Polymers Using RSM, GA, Hybrid FFD-GA, and MOGA Methods

Author:

Alateyah Abdulrahman I.ORCID,El-Taybany Yasmine,El-Sanabary SamarORCID,El-Garaihy Waleed H.ORCID,Kouta Hanan

Abstract

The machining of polymers has become widely common in several components of industry 4.0 technology, i.e., mechanical and structural components and chemical and medical instruments, due to their unique characteristics such as: being strong and light-weight with high stiffness, chemical resistance, and heat and electricity insolation. Along with their properties, there is a need to attain a higher quality surface finish of machined parts. Therefore, this research concerns an experimental and analytical study dealing with the effect of process parameters on process performance during the turning two different types of polymers: high-density polyethylene (HDPE) and unreinforced polyamide (PA6). Firstly, the machining output responses (surface roughness (Ra), material removal rate (MRR), and chip formation (λc)) are experimentally investigated by varying cutting speed (vc), feed rate (f), and depth of cut (d) using the full factorial design of experiments (FFD). The second step concerns the statistical analysis of the input parameters’ effect on the output responses based on the analysis of variance and 3D response surface plots. The last step is the application of the RSM desirability function, genetic algorithm (GA), and hybrid FFD-GA techniques to determine the optimum cutting conditions of each output response. The lowest surface roughness for HDPE was obtained at vc = 50 m/min, f = 0.01 mm/rev, and d = 1.47 mm and for PA6 it was obtained at vc = 50 m/min, f = 0.01 mm/rev, and d = 1 mm. The highest material removal rate was obtained at vc = 150 m/min, f = 0.01 mm/rev, and d = 1.5 mm for both materials. At f = 0.01 mm/rev, d = 1.5 mm, and vc = 100 for HDPE, and vc = 77 m/min for PA6, the largest chip thickness ratios were obtained. Finally, the multi-objective genetic algorithm (MOGA) methodology was used and compared.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3