The Effects of Humidity on Cast PA6G during Turning and Milling Machining

Author:

Bozdemir Mustafa1ORCID

Affiliation:

1. Department of Mechanical and Metal Technologies, Kırıkkale Vocational High School, Kırıkkale University, Kırıkkale, Turkey

Abstract

We compared the foundry PA6G samples in several dry and humid but different storage environments by processing them under the same cutting conditions such as progress rate (100, 120, 140, and 160 mm/min), cutting rate (90, 110, and 130 m/min), and cutting depth (1, 1.5, 2, 2.5, and 3 mm), in terms of formation of average surface roughness values. An improvement of 10.4% in average surface roughness was observed in the measurements performed after the milling process on the humid material and then the process was carried out under a dry condition. Degradation of about 14% in the average surface roughness was observed. The measurement was carried out after the samples were used in milling measurement which was performed on the dry PA6G material that was kept in a humid environment. An improvement of 6.4% in average surface roughness was observed. The measurements were performed after CNC machines process was applied on humid and dried PA6G material. This difference between milling and turning procedures is caused by the workpiece losing its humidity in the turning machine due to the turning effect. It was noted that the processes performed on the CNC turning stand were less affected by the humidity factor.

Funder

Scientific and Technological Research Council

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3