Surface Characteristics and Color Stability of Dental PEEK Related to Water Saturation and Thermal Cycling

Author:

Porojan LilianaORCID,Toma Flavia Roxana,Bîrdeanu Mihaela IonelaORCID,Vasiliu Roxana Diana,Uțu Ion-Dragoș,Matichescu AnamariaORCID

Abstract

(1) Background: The study was undertaken to evaluate the surface characteristics, microhardness, and color stability of PEEK materials related to water saturation and in vitro aging. (2) Methods: Custom specimens of unmodified and modified PEEK CAD/CAM materials were investigated: BioHPP, a ceramic reinforced PEEK, and Finoframe PEEK and Juvora medical PEEK, 100% PEEK materials. Forty-eight plates were sectioned in rectangular slices. The specimens were immersed in distilled water at 37 °C for a period of 28 days, and then subjected to aging by thermal cycling (10,000 cycles). Surface roughness was measured with a contact profilometer; nanosurface topographic characterization was made by Atomic Force Microscopy; Vickers hardness measurements were performed with a micro-hardness tester; color changes were calculated. All registrations were made before immersion in water and then subsequently once a week for 4 weeks, and after thermocycling. (3) Results: The studied reinforced and unfilled PEEK materials reached water saturation after the first week of immersion, without significant differences between them. The most affected from this point of view was the reinforced PEEK material. Thermocycling induces a significant increase inmicroroughness, without significant differences between the studied materials. In relation to the nanosurface topography and roughness, the reinforced PEEK material was the least modified by aging. The color changes after 4 weeks of water immersion and one year of simulated in vitro aging ranged from extremely slight to slight, for all materials. (4) Conclusions: Water absorption was associated with a decrease in microhardness. Surface characteristics are affected by water immersion and thermocycling. Perceivable or marked color changes of the materials were not detected during the study.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3