The effect of thermal aging on flexural strength of CAD/CAM hybrid and polymeric materials

Author:

Yeslam Hanin EORCID,Alharbi ShadiaORCID,Albalawi WaadORCID,Hasanain Fatin AORCID

Abstract

Abstract The field of dentistry is consistently innovating with the introduction of novel hybrid and polymer materials for computer-aided design and manufacturing (CAD/CAM). It is noteworthy that the temperature within the oral cavity has a significant impact on the strength of new biomaterials utilized for CAD/CAM fabrication of fixed partial dentures (FPDs). Studies have demonstrated that alterations in intraoral temperature may significantly affect the longevity and durability of dental restorative materials. This study aimed to evaluate the flexural strength, flexural modulus, and effect of thermal aging on CAD/CAM restorative materials. Five CAD/CAM materials were investigated: nano-ceramic-hybrid (GR), polymer-infiltrated-ceramic-network (VE), polyether-ether-ketone (PK), fiberglass-reinforced epoxy-resin (CT), and Feldspar Ceramic (VB). A total of 100 bar-shaped specimens were prepared (N = 20). Each group was subdivided into thermocycling (TC) and no-thermocycling (NTC) subgroups (n = 10). All the specimens underwent a 3-point bending test. The mean flexural strengths and moduli were statistically analyzed using paired t-test, analysis of variance (ANOVA), and Bonferroni pair-wise comparison (p < 0.05). Significant differences were observed in the flexural strength (FS) and modulus (E) between the materials (p < 0.001). GR had the highest FS among tested hybrid materials. NTC CT had the highest FS (924.88 ± 120.1 MPa), followed by GR (385.13 ± 90.73 MPa), then PK (309.56 ± 46.84 MPa). The FS of brittle ceramic VB was the lowest (p < 0.001), but similar to that of PICN VE. Only resin-containing VE and CT significantly decreased in E after thermocycling (p < 0.01, p = 0.013), showing the softening effect of thermocycling on their resin matrix. It can be concluded that new hybrid materials (GR) had higher flexural strength than feldspar ceramic and other resin/polymeric CAD/CAM materials. Polymeric PEEK and GR hybrid materials were resistant to significant deleterious effects of TC. Therefore, they would be appropriate for situations with a higher stress load.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Reference67 articles.

1. CAD/CAM ceramic restorative materials for natural teeth;Spitznagel;J. Dent. Res.,2018

2. CAD/CAM engineering and artificial intelligence in dentistry;Naidu;IOP Conf. Ser.: Mater. Sci. Eng.,2022

3. Pressable lithium disilicate ceramic versus CAD/CAM resin composite restorations in patients with moderate to severe tooth wear: Clinical observations up to 13 years;Edelhoff;J. Esthet. Restor. Dent.,2022

4. Fracture toughness, flexural strength, and flexural modulus of new CAD/CAM Resin composite blocks;Lucsanszky;J Prosthodont,2020

5. Interpenetrating network ceramic-resin composite dental restorative materials;Swain;Dent. Mater.,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3